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e “Personalized medicine is the practice of clinical *scular C°
decision-making such that the decisions made maximize
the outcomes that the patient most cares about and
minimizes those that the patient fears the most, on the
basis of as much knowledge about the individual’s state
as is available.”

e Pauker and Kassirer N Engl J Med 316:250-258, 1987

Personalized Medicine



Evidence-based Medicine

e "the conscientious, explicit and judicious use of
current best evidence in making decisions about the

care of individual patients.”
e Sackett JAMA 1996

e “Systematic review (with homogeneity) of RCTs”

provide the best evidence
« CEBM 2010



 What’s best on average must be best for each individual.



The Fallacy of Division
(Wennington’s Fallacy)
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e |t is potentially misleading to draw inferences about
individuals based on aggregated characteristics of the
(heterogeneous) group to which they belong.

e How do we estimate “individual” treatment effects?



Clinical Trial: “Box Score”

[l ACTUAL OUTCOME
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Individual Treatment Effects in a
Deterministic Framework: Four
possibilities

Without With
Treatment Treatment

0 0 NO EFFECT
0 1 HARM

1 0 BENEFIT

1 1 NO EFFECT

Subject Name |Without Treatment | With Treatment
SAM 0

MARY 0
BOB 0

BEN 0
CHRISTINE 0
NEIL 1

MOHAMED 1
JENNIFER 1
PAUL 0

NISHA 1

MIGUEL 1

LAYLA 0
PAUL 0

EMANUEL 1
CHERYL 0
PATRICK 0

OSCAR 1
JULIANNE 0

THOMAS 0

GEORGE 0




Clinical Trial: “Box Score”
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Clinical Trial: “Box Score”
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Clinical Trial: “Box Score”

Without Treatment |With Treatment
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Why do we fail to reliably detect HTE?

1. Information failure

e Observable co-variates are totally unrelated to the causal
determinants of HTE.

e We just need better biomarkers, better genomics, better
imaging

2. Analytic failure
e Low power

e Limitations of conventional (one-variable-at-a-time)
subgroup analysis



Problems With Conventional Subgroup
Analysis

e Spurious False Positives



“Positive” subgroup analyses
subsequently shown to be false

Observation Refutation

Aspirin is ineffective in secondary prevention of stroke in women™* 31

Rothwell PM. Lancet 2005;365(9454):176-86.



Problems With Conventional Subgroup
Analysis

e Spurious False Positives

 Compare groups of patients that are more similar
than disimilar.

 Individuals patients belong to many different
subgroups.



Interim Summary

e Determining the best treatment on average (the task
of an RCT) is very different from determining the best
treatment for an individual (the task of a good
clinician) .

e Conventional subgroup analysis of clinical trials are
typically inadequate and can also be misleading.



Why Risk Based Subgroup Analysis
Should be Routine
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Why privilege risk-based HTE analysis?

e Risk is a known mathematical determinant of
treatment effect.



Common Measures of Treatment Effect

Risk Reduction| Definition
(RR)
Absolute RR EER
Relative RR 1- EER

Odds Ratio EER/(1-EER)
Cerk1CER)

CER=control event rate
EER=experimental event rate




An lllustration of Scale Dependence of
HTE over Baseline Outcome Risk

holding the RR constant
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Why privilege risk-based HTE analysis?

e Risk is a known mathematical determinant of
treatment effect.

e When baseline risk heterogeneity is present (and the
treatment effect is non-zero), there is always HTE.

 Risk provides a summary measure that takes into
account multiple variables that are relevant; provides
“patient-centered” evidence.



Mortality Risk [percent)

Figure 1: Distribution of Mortality Risk with
Thrombolytic Thearpy in Patients with Acute
Myocardial Infarction
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DANAMI-2 ..

Medical Therapy

High
Risk

Number at risk
TIMI 0-4

Thune JJ, et al. Circulation 2005,112:2017-2021.
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Predicted Risk Distributions in RCTs
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redicted Risk Distributions in RCTs
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Diabetes Prevention Program (DPP)
Randomized Controlled Trial

B Participants: 3060 nondiabetic persons with
evidence of impaired glucose metabolism.

B |ntervention: Intervention groups received
metformin or a lifestyle-modification program.

® Main Outcome Measure: Development of diabetes

The DPP study was conducted by the DPP Investigators and supported by the National
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).



DPP Risk Stratified Results
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1.80 -

1.28 4

1.00 -+

Q.78

0.50 -

0,25

0.00

Lifestyle

Hazard Ratio

p value = NS

1.80 -

1.25

1,00 —

0.5

0.50

025

0.00 |

Metformin

.
.

1 2 = | 4

p value = 0.0008

28




DPP Risk Stratified Results

Absolute Risk Reduction (%)

Lifestyle

Absolute Risk Reduction (%)

Metformin
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Predicted Risk Distributions in RCTs
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 Participants: Participants with HF and LVEF less
than or equal to 45% (main DIG study, n=6800)
or LVEF >45% (ancillary DIG study, n=988).

* Intervention: digoxin versus placebo

e Main Outcome Measure: Hospitalization due
to worsening HF, all cause hospitalization

Upshaw JN et al. unpublished
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Digitalis Investigator Group (DIG) Study
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National Lung Screening (NLST) Trial

e Participants: Smokers between the ages of 55
and 74 years with a minimum of 30 pack-years
of smoking and no more than 15 years since
quitting

* Intervention: Low-dose CT screening or chest
radiography

 Main Outcome Measure: Lung-cancer deaths

Kovalchik SA et al. N Engl J Med 2013; 369: 245-54



NLST Risk Stratified Results

A Lung-Cancer Mortality Ratio, for Low-Dose CT versus Radiography B Lung-Cancer Deaths Prevented by Low-Dose CT
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RISk based analyses can
counter-intuitive findi

m Overall effectiveness results may

reveal
ngs

oe driven by a

relatively small group of influential (typically high

risk) patients;

® The typical (median) risk patient is frequently at
considerably lower risk than the overall average;

B The average benefit seen in the summary result
often over estimates the benefit (on the RD scale)
in most patients (and may obscure harm in

many).
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Clinical Conditions where Outcome Risk is Major
Determinant of Clinica

ly-Relevant HTE

CLINICAL CONDITION

INTERVENTION

Symptomatic carotid stenosis

Carotid endarterectomy

Non-valvular atrial fibrillation

Anticoagulation for primary prevention of stroke

Coronary artery disease

Coronary artery bypass grafting

Primary prevention of coronary artery
disease

Blood pressure lowering
Aspirin
Lipid lowering

Acute coronary syndromes

Early invasive strategy (versus conservative)
Clopidogrel (versus placebo)
Enaxparin (versus unfractionated heparin)

ST-Elevation acute myocardial infarction

tPA (versus streptokinase)
Percutaneous coronary intervention (versus thrombolytic
therapy)

Severe sepsis

Drotrecogin alfa (activated protein C)

Pre-diabetes

Lifestyle intervention
Metformin

Tobacco smoking

Lung cancer screening

Kent DM, et al. Trials 2010;11:85.




Summary

* Heterogeneity of outcome risk is ubiquitous.

* Heterogeneity of outcome risk inevitably gives
rise to heterogeneity of treatment effect.

e One variable at a time subgroup analyses are
inadequate (and prone to spurious false
positive results).

e Risk based subgroup analyses can do better.
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Assessing and reporting heterogeneity in
J P J J 4 \P\ TRIALS

treatment effects in clinical trials: a proposal
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1. Evaluate and report on the distribution of risk in the overall study population and
in the separate treatment arms of the study by using a risk prediction model or
index.

2.  Primary subgroup analyses should include reporting how relative and absolute risk
reduction varies in a risk-stratified analysis.

3. Any additional primary subgroup analysis should be pre-specified and limited to
patient attributes with strong a prior pathophysiological or empirical justification.

4. Conduct and report on secondary (exploratory) subgroup analyses separate from
primary subgroup comparisons.

5. All analyses conducted must be reported and statistical testing of HTE should be
done using appropriate methods (such as interaction terms) and avoiding over-
interpretation.
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Some (Really Important) Caveats

* Understanding how to model the relationship
between risk and benefit, and how to estimate
(absolute) individual treatment effects.

* How to capture the effects of important single-
variable interactions, without including
spurious interactions.

e How to include other dimensions (of risk and
other things)
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